Robust descriptive discriminant analysis for repeated measures data

نویسندگان

  • Tolulope T. Sajobi
  • Lisa M. Lix
  • Bolanle M. Dansu
  • William Laverty
  • Longhai Li
چکیده

Robust repeated measures discriminant analysis (RMDA) procedures based on parsimonious covariance structures were developed using trimmed estimators. The e ects of non-normality, covariance structure, and mean con guration on bias and root mean square error (RMSE) of RMDA coe cients were studied using Monte Carlo techniques. The bias and RMSE values of robust RMDA coe cients were at least 10% and 5% smaller than those of coe cients for DA procedures based on least squares/maximum likelihood estimators when data were non-normal and the covariance structure was correctly speci ed. The proposed procedures are useful to identify the repeated measurements that describe group separation for non-normal data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discriminant Analysis for Repeated Measures Data: A Review

Discriminant analysis (DA) encompasses procedures for classifying observations into groups (i.e., predictive discriminative analysis) and describing the relative importance of variables for distinguishing amongst groups (i.e., descriptive discriminative analysis). In recent years, a number of developments have occurred in DA procedures for the analysis of data from repeated measures designs. Sp...

متن کامل

Robust Fisher Discriminant Analysis

Fisher linear discriminant analysis (LDA) can be sensitive to the problem data. Robust Fisher LDA can systematically alleviate the sensitivity problem by explicitly incorporating a model of data uncertainty in a classification problem and optimizing for the worst-case scenario under this model. The main contribution of this paper is show that with general convex uncertainty models on the proble...

متن کامل

Discriminant analysis for compositional data and robust parameter estimation

Abstract Compositional data, i.e. data including only relative information, need to be transformed prior to applying the standard discriminant analysis methods that are designed for the Euclidean space. Here it is investigated for linear, quadratic, and Fisher discriminant analysis, which of the transformations lead to invariance of the resulting discriminant rules. Moreover, it is shown that f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2012