Robust descriptive discriminant analysis for repeated measures data
نویسندگان
چکیده
Robust repeated measures discriminant analysis (RMDA) procedures based on parsimonious covariance structures were developed using trimmed estimators. The e ects of non-normality, covariance structure, and mean con guration on bias and root mean square error (RMSE) of RMDA coe cients were studied using Monte Carlo techniques. The bias and RMSE values of robust RMDA coe cients were at least 10% and 5% smaller than those of coe cients for DA procedures based on least squares/maximum likelihood estimators when data were non-normal and the covariance structure was correctly speci ed. The proposed procedures are useful to identify the repeated measurements that describe group separation for non-normal data.
منابع مشابه
Discriminant Analysis for Repeated Measures Data: A Review
Discriminant analysis (DA) encompasses procedures for classifying observations into groups (i.e., predictive discriminative analysis) and describing the relative importance of variables for distinguishing amongst groups (i.e., descriptive discriminative analysis). In recent years, a number of developments have occurred in DA procedures for the analysis of data from repeated measures designs. Sp...
متن کاملRepeated measures discriminant analysis 1 Discriminant Analysis for Repeated Measures Data: Effects of Mean and Covariance Misspecification on Bias and Error in Discriminant Function Coefficients
Word Count: 47 Manuscript Word Count: 4387 Repeated measures discriminant analysis 2
متن کاملDiscriminant Analysis for Repeated Measures Data: Effects of Mean and Covariance Misspecification on Bias and Error in Discriminant Function Coefficients
متن کامل
Robust Fisher Discriminant Analysis
Fisher linear discriminant analysis (LDA) can be sensitive to the problem data. Robust Fisher LDA can systematically alleviate the sensitivity problem by explicitly incorporating a model of data uncertainty in a classification problem and optimizing for the worst-case scenario under this model. The main contribution of this paper is show that with general convex uncertainty models on the proble...
متن کاملDiscriminant analysis for compositional data and robust parameter estimation
Abstract Compositional data, i.e. data including only relative information, need to be transformed prior to applying the standard discriminant analysis methods that are designed for the Euclidean space. Here it is investigated for linear, quadratic, and Fisher discriminant analysis, which of the transformations lead to invariance of the resulting discriminant rules. Moreover, it is shown that f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 56 شماره
صفحات -
تاریخ انتشار 2012